En cálculo, un punto crítico de una función de una variable real es cualquier valor en eldominio en donde la función no es diferenciable o cuando su derivada es 0.
El valor de la función en el punto crítico es un valor crítico de la función. Estas definiciones admiten generalizaciones a funciones de varias variables, mapas diferenciables entre Rm y Rn, y mapas diferenciables entre variedades diferenciables.
Por el teorema de Fermat, los máximos y mínimos locales de una función pueden ocurrir únicamente en sus puntos críticos. Sin embargo, no todo punto estacionario es un máximo o mínimo de la función; puede corresponder también a un punto de inflexión de la gráfica, como para ƒ(x) = x3 en x = 0, o la gráfica puede oscilar en la vecindad del punto, como en el caso de la función definida por la fórmula ƒ(x) = x2sen(1/x) para x ≠ 0 y ƒ(0) = 0, en el punto x = 0.
Sentido de Concavidad
f presenta concavidad positiva en x=a si existe un E*a / para todo x perteneciente al E*a f(x) > f'(a)(x-a) + f(a).

f presenta concavidad negativa en x=a si existe un E*a / para todo x perteneciente al E*a f(x) < f'(a)(x-a) + f(a).

Segunda derivada
Derivada segunda
Se llama derivada segunda de una función f(x) a la derivada de la derivada de dicha función.
Notación: f''(x).
Este concepto se puede extender a la derivada n-ésima de una función.